Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(4): e2305615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718453

RESUMO

The development of cerium (Ce) single-atom (SA) electrocatalysts for oxygen reduction reaction (ORR) with high active-site utilization and intrinsic activity has become popular recently but remains challenging. Inspired by an interesting phenomenon that pore-coupling with single-metal cerium sites can accelerate the electron transfer predicted by density functional theory calculations, here, a facile strategy is reported for directional design of a highly active and stable Ce SA catalyst (Ce SA/MC) by the coupling of single-metal Ce-N4 sites and mesopores in nanocarbon via pore-confinement-pyrolysis of Ce/phenanthroline complexes combined with controlling the formation of Ce oxides. This catalyst delivers a comparable ORR catalytic activity with a half-wave potential of 0.845 V versus RHE to the Pt/C catalyst. Also, a Ce SA/MC-based zinc-air battery (ZAB) has exhibited a higher energy density (924 Wh kgZn -1 ) and better long-term cycling durability than a Pt/C-based ZAB. This proposed strategy may open a door for designing efficient rare-earth metal catalysts with single-metal sites coupling with porous structures for next-generation energy devices.

2.
ACS Appl Mater Interfaces ; 15(23): 28321-28331, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265035

RESUMO

To enhance the power conversion efficiency (PCE) and stability of all-polymer solar cells (all-PSCs), a new precursor solution based on an in situ chemical reaction of nanomolybdenum powder (Mo), hydrogen peroxide (H2O2), and ammonia (NH3·H2O) was developed for preparing a MoO3 hole transport layer (HTL) for all-PSCs. The results showed that the PCE and stability of PM6:PY-IT solar cells based on the MoO3 HTL were better than those based on a PEDOT:PSS layer. To further understand the relationship between the HTL and the device performance, ultrafast photophysical processes of all-PSCs based on different HTLs were contrastively analyzed. Our research indicated that the micromorphology of active layers could be influenced by the interfacial layer material, consequently determining the photoelectric conversion process of all-PSCs. The MoO3-based all-PSCs had longer charge lifetime, higher charge mobility, and lower charge recombination characteristics compared with the devices based on the PEDOT:PSS layer during the operation time. As a result, the MoO3-based PM6:PY-IT solar cells achieved an initial PCE of 15.2%, and they still maintained more than 80% of their initial efficiency after 1000 h.

3.
Small ; 19(23): e2207675, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897005

RESUMO

The poor oxygen diffusion and sluggish oxygen reduction reaction (ORR) kinetics at multiphase interfaces in the cathode suppress the practical application of zinc-air batteries. Developing effective strategies to tackle the issue is of great significance for overcoming the performance bottleneck but remains challenging. Here, a multiscale hydrophobic surface is designed on the iron single-atom catalyst via a gas-phase fluorination-assisted method inspired by the structure of gas-trapping mastoids on lotus leaves. The hydrophobic Fe-FNC attains a higher peak power density of up to 226 mW cm-2 , a long durability of up close to 140 h, and better cyclic durability of up to 300 cycles compared to the corresponding Pt/C-based Zn-air battery. Experiments and theoretical calculations indicate that the formed more triple-phase interfaces and exposed isolated Fe-N4 sites are proposed as the governing factors in boosting electrocatalytic ORR activity and remarkable cycling durability for Zn-air batteries.

4.
J Colloid Interface Sci ; 608(Pt 3): 2339-2346, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774315

RESUMO

Flexible triboelectric generators present a wide range of prospective applications owing to their small size, light weight, and wearability; in addition, they can convert external mechanical energy into electrical energy to provide an energy supply for wearable electronic products. In this study, a wearable textile triboelectric generator was developed by weaving polyurethane (PU) nanofiber core-spun yarn and Si3N4-electret-doped polyvinylidene fluoride (PVDF) nanofiber core-spun yarn into a double-layer fabric. Within the double-layer fabric, one layer was Si3N4-doped PVDF (denoted as Si3N4@PVDF) nanofiber fabric, and the other was PU nanofiber fabric. When subjected to an external mechanical force, PU nanofiber fabric and Si3N4@PVDF nanofiber fabric came into contact and were able to convert external mechanical energy into electrical energy. The most notable instantaneous electrical performance of this triboelectric nanogenerator was open circuit voltage of 71 V, short-circuit current of 0.7 µA, and output power of 56 µW. Additionally, the wearable textile triboelectric generator exhibited superior washability, stability, and cycle durability. More significantly, it was capable of driving some low-consumption electronic products, including capacitors, LED bulbs, and digital meters, thereby exhibiting a strong potential for flexible self-powered electronic devices and intelligent textiles.


Assuntos
Nanofibras , Dispositivos Eletrônicos Vestíveis , Eletricidade , Eletrônica , Têxteis
5.
Inorg Chem ; 60(20): 15519-15528, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34617745

RESUMO

Cyan-emitting phosphors are important for near-ultraviolet (NUV) light-emitting diodes (LEDs) to gain high-quality white lighting. In the present work, a Bi3+-doped BaScO2F, R+ (R = Na, K, Rb) perovskite, which emits 506 nm cyan-green light under 360 or 415 nm excitation, is obtained via a high-temperature solid-state method for the first time. The obtained perovskite shows improved photoluminescence and thermal stability due to the charge compensation of Na+, K+, and Rb+ co-doping. Its spectral broadening is attributed to two centers Bi (1) and Bi (2), which are caused by the zone-boundary octahedral tilting due to the substitution of Bi3+ for the larger Ba2+. Employing the blend phosphors of Ba0.998ScO2F:0.001Bi3+,0.001K+ and the commercial BAM:Eu2+, YAG:Ce3+, and CaAlSiN3:Eu2+, a full-spectrum white LED device with Ra = 96 and CCT = 4434 K was fabricated with a 360 nm NUV chip. Interestingly, a novel strategy is proposed: the cyan-green Ba0.998ScO2F:0.001Bi3+,0.001K+ and orange Sr3SiO5:Eu2+ phosphors were packaged with a 415 nm NUV chip to produce the white LED with Ra = 85 and CCT = 4811 K.

6.
Nanoscale Res Lett ; 16(1): 92, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032941

RESUMO

The increasing popularity of wearable electronic devices has led to the rapid development of flexible energy conversion systems. Flexible rechargeable zinc-air batteries (ZABs) with high theoretical energy densities demonstrate significant potential as next-generation flexible energy devices that can be applied in wearable electronic products. The design of highly efficient and air-stable cathodes that can electrochemically catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable but challenging. Flexible carbon-based catalysts for ORR/OER catalysis can be broadly categorized into two types: (i) self-supporting catalysts based on the in situ modification of flexible substrates; (ii) non-self-supporting catalysts based on surface coatings of flexible substrates. Methods used to optimize the catalytic performance include doping with atoms and regulation of the electronic structure and coordination environment. This review summarizes the most recently proposed strategies for the synthesis of designer carbon-based electrocatalysts and the optimization of their electrocatalytic performances in air electrodes. And we significantly focus on the analysis of the inherent active sites and their electrocatalytic mechanisms when applied as flexible ZABs catalysts. The findings of this review can assist in the design of more valuable carbon-based air electrodes and their corresponding flexible ZABs for application in wearable electronic devices.

7.
Nanoscale Res Lett ; 15(1): 21, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31993836

RESUMO

Designing appropriate methods to effectively enhance nitrogen-doping efficiency and active-site density is essential to boost the oxygen reduction reaction (ORR) activity of non-platinum Fe/N/C-type electrocatalysts. Here, we propose a facile and effective strategy to design a mesopore-structured Fe/N/C catalyst for the ORR with ultrahigh BET surface area and outstanding conductivity via nanochannels of molecular sieve-confined pyrolysis of Fe2+ ions coordinated with 2,4,6-tri(2-pyridyl)-1,3,5-triazine complexes as a novel precursor with the stable coordination effect. Combining the nanochannel-confined effect with the stable coordination effect can synergistically improve the thermal stability and stabilize the nitrogen-enriched active sites, and help to control the loss of active N atoms during pyrolysis process and to further obtain a high active-site density for enhancing the ORR activity. The as-prepared Fe/N/C electrocatalyst has exhibited excellent catalytic activity with an onset potential of ~ 0.841 V (versus RHE) closely approaching the Pt/C catalyst and high long-term stability in alkaline electrolyte. Besides, low-hydrogen peroxide yield (< 6.5%) and high electron transfer number (3.88-3.94) can be found on this catalyst, indicating that it is a valuable substitute for traditional Pt/C catalysts. This work paves a new way to design high-performance Fe/N/C electrocatalysts and deepens the understanding of active site and ORR catalysis mechanism.

8.
ACS Appl Mater Interfaces ; 11(39): 35622-35629, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31502436

RESUMO

The accurate and early detection of Mycobacterium tuberculosis (Mtb) is of great significance for the clinical diagnosis and treatment of tuberculosis. In this work, we report a facile method for the controllable synthesis of a novel few-layered two-dimensional graphdiyne nanosheet (GDY NS) with a thickness of only ∼0.9 nm via an electrochemical lithium-intercalation strategy, which possesses a prominent fluorescence quenching effect. The few-layered GDY NS with its strong adsorptivity for single-stranded DNA is first proposed as a new fluorescent sensing platform for the real-time detection of DNA with excellent specificity, multiplicity, and superhigh sensitivity (limit of detection as low as 25 pM). This sensing platform can be further applied for the Mtb detection from clinical samples and the identification of drug-resistant mutants with a low background and a high signal-to-noise ratio. Herein, we provide a potential basis for the clinical development of rapid, sensitive, and accurate substitutes for the molecular diagnosis of Mtb and its drug-resistant genes.


Assuntos
DNA Bacteriano/química , Farmacorresistência Bacteriana/genética , Fluorescência , Grafite/química , Mycobacterium tuberculosis/genética
9.
Nanoscale Res Lett ; 14(1): 22, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30645714

RESUMO

Synthesis of metal-free carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace the conventional platinum-based catalysts has currently become a hot topic of research. This work proposes an activation-assisted carbonization strategy for the fabrication of nitrogen-doped nanoporous carbon microfibers (Me-CFZ-900) with a high BET surface area (~ 929.4 m2 g-1) via using melamine as a promoter/nitrogen source and bamboo-carbon biowastes as the carbon source with the help of a zinc chloride activator. Electrochemical tests showed that the Me-CFZ-900 material has exhibited excellent ORR electrocatalytic activity and long-term stability, and also displayed a quasi-four-electron ORR pathway in alkaline electrolyte. We also find that the graphitic-N may be the catalytically active site for the ORR, but the formation of planar-N can further help to promote the ORR activity for our catalysts. The results open a new space and provide a new idea to prepare valuable porous nanocarbon materials on the basis of carbonaceous solid wastes for catalysis of a wide range of electrochemical reactions in the future.

10.
ACS Macro Lett ; 8(5): 563-568, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35619364

RESUMO

Clearance of bacteria-secreted toxins can be a benefit to treating bacterial infections. In this study, we show a polydiacetylene (PDA) nanoparticle-functionalized microgel for managing topical bacterial infections. These functional microgels with designed shapes and size are precisely fabricated via a digital light processing (DLP)-based 3D bioprinting process. The PDA nanoparticles that can bind and neutralize pore-forming toxins (PFTs) are installed in the microgels by readily mixing within the monomer solution followed by 3D printing. PFTs can diffuse into the microgels and subsequently are captured and neutralized by the PDA nanoparticles. In the mouse model, the local injection of the microgels promotes tissue recovery after bacterial infections. This work presents a PDA nanoparticle-functionalized microgel for topical bacterial infection treatments by removing PFTs, which could inspire future infection treatments.

11.
Materials (Basel) ; 11(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304781

RESUMO

A catalyst toward oxygen evolution reaction (OER) was synthesized by depositing cobalt hydroxide on carbon black. Ultrasonication was applied during precipitation to improve the performance of the catalyst. The ultrasonic-assisted process resulted in the refinement of the cobalt hydroxide particles from 400 nm to 50 nm, and the thorough incorporation of these particles with carbon black substrate. The resulting product exhibited enhanced OER catalytic activity with an onset potential of 1.54 V (vs. reversible hydrogen electrode), a Tafel slope of 18.18 mV/dec, and a stable OER potential at a current density of 10 mA cm-2, because of the reduced resistance of the catalyst and the electron transfer resistance.

12.
Nanoscale Res Lett ; 12(1): 595, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149397

RESUMO

Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

13.
Materials (Basel) ; 10(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772920

RESUMO

The great challenge of boosting the oxygen reduction reaction (ORR) activity of non-noble-metal electrocatalysts is how to achieve effective exposure and full utilization of nitrogen-rich active sites. To realize the goals of high utilization of active sites and fast electron transport, here we report a new strategy for synthesis of an iron and nitrogen co-doped carbon nanolayers-wrapped multi-walled carbon nanotubes as ORR electrocatalyst (N-C@CNT-Fe) via using partially carbonized hemoglobin as a single-source precursor. The onset and half-wave potentials for ORR of N-C@CNT-Fe are only 45 and 54 mV lower than those on a commercial Pt/C (20 wt.% Pt) catalyst, respectively. Besides, this catalyst prepared in this work has been confirmed to follow a four-electron reaction mechanism in ORR process, and also displays ultra-high electrochemical cycling stability in both acidic and alkaline electrolytes. The enhancement of ORR activity can be not only attributed to full exposure and utilization of active site structures, but also can be resulted from the improvement of electrical conductivity owing to the introduction of CNT support. The analysis of X-ray photoelectric spectroscopy shows that both Fe-N and graphitic-N species may be the ORR active site structures of the prepared catalyst. Our study can provide a valuable idea for effective improvement of the electrocatalytic activity of non-noble-metal ORR catalysts.

14.
Nanoscale Res Lett ; 12(1): 144, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28235379

RESUMO

The design of noble-metal-free catalysts for oxygen reduction reaction (ORR) is very important to the commercialization of fuel cells. Here, we use a Co-modified montmorillonite (Co-MMT) as a flat template to prepare Co- and N-doped nanocarbon ORR catalysts derived from carbonization of polyaniline at controlled temperatures. The use of flat template can hinder the agglomeration of polyaniline during pyrolysis process and optimize the N-rich active site density on the surface. The addition of transition metal Co in the flat MMT template can largely promote the formation of Co-N sites in prepared catalyst, facilitating the effective improvement of catalytic activity towards the ORR with a direct four-electron transfer pathway. The excellent ORR activity may be mainly attributed to high contents of graphitic N, pyridinic-N, and Co-N configurations. This study opens a new way to rationally design cheap and active ORR catalysts by using simple flat compound as a direct template.

15.
Nanoscale Res Lett ; 11(1): 268, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27225424

RESUMO

So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

16.
Nanoscale ; 7(38): 15990-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26367816

RESUMO

The search for low-cost, highly active, and stable catalysts to replace the Pt-based catalysts for oxygen reduction reaction (ORR) has recently become a topic of interest. Herein, we report a new strategy to design a nitrogen-doped carbon nanomaterial for use as a metal-free ORR catalyst based on facile pyrolysis of protein-rich enoki mushroom (Flammulina velutipes) biomass at 900 °C with carbon nanotubes as a conductive agent and inserting matrix. We found that various forms of nitrogen (nitrile, pyrrolic and graphitic) were incorporated into the carbon molecular skeleton of the product, which exhibited more excellent ORR electrocatalytic activity and better durability in alkaline medium than those in acidic medium. Remarkably, the ORR half-wave potential measured on our material was around 0.81 V in alkaline medium, slightly lower than that on the commercial 20 wt% Pt/C catalyst (0.86 V). Meanwhile, the ORR followed the desired 4-electron transfer mechanism involving the direct reduction pathway. The ORR performance was also markedly better than or at least comparable to the leading results in the literature based on biomass-derived carbon-based catalysts. Besides, we significantly proposed that the graphitic-nitrogen species that is most responsible for the ORR activity can function as the electrocatalytically active center for ORR, and the pyrrolic-nitrogen species can act as an effective promoter for ORR only. The results suggested a promising route based on economical and sustainable fungi biomass towards the large-scale production of valuable carbon nanomaterials as highly active and stable metal-free catalysts for ORR under alkaline conditions.


Assuntos
Agaricales/metabolismo , Proteínas Fúngicas/metabolismo , Nanotecnologia/métodos , Nanotubos de Carbono/química , Biomassa , Difração de Raios X
17.
Materials (Basel) ; 9(1)2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28787802

RESUMO

The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR) is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900) as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysis of bioprotein-enriched enoki mushroom as a starting material, and inexpensive carbon nanoparticles as the inserting matrix and conducting agent at controlled temperatures. Results show that the N-BC@CNP-900 catalyst exhibits the best ORR electrocatalytic activity with an onset potential of 0.94 V (versus reversible hydrogen electrode, RHE) and high stability. Meanwhile, this catalyst significantly exhibits good selectivity of the four-electron reaction pathway in an alkaline electrolyte. It is notable that pyridinic- and graphtic-nitrogen groups that play a key role in the enhancement of the ORR activity may be the catalytically active structures for the ORR. We further propose that the pyridinic-nitrogen species can mainly stabilize the ORR activity and the graphitic-nitrogen species can largely enhance the ORR activity. Besides, the addition of carbon support also plays an important role in the pyrolysis process, promoting the ORR electrocatalytic activity.

18.
Materials (Basel) ; 8(10): 6658-6667, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28793590

RESUMO

The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR) is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe-N/C electrocatalyst derived from the co-pyrolysis of Ipomoea aquatica biomass, carbon black (Vulcan XC-72R) and FeCl3·6H2O at 900 °C under nitrogen atmosphere. Electrochemical results show that the Fe-N/C catalyst exhibits higher electrocatalytic activity for ORR, longer durability and higher tolerance to methanol compared to a commercial Pt/C catalyst (40 wt %) in an alkaline medium. In particular, Fe-N/C presents an onset potential of 0.05 V (vs. Hg/HgO) for ORR in an alkaline medium, with an electron transfer number (n) of ~3.90, which is close to that of Pt/C. Our results confirm that the catalyst derived from I. aquatica and carbon black is a promising non-noble metal catalyst as an alternative to commercial Pt/C catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...